
COMP7505	Assignment	3	Report	
Anthony	Carrick	

Introduction	
“Pre-processing	the	text	in	the	document	to	optimise	searching	is	an	expensive	process.”	as	Richard	
Thomas	of	UQ	states.	[1]		This	report	investigates	some	possible	approaches	to	minimising	this	cost	
by	saving	the	result	of	the	pre-processing	to	disk.	The	requirements	are	the	ability	to	search	for	a	
word	and	list	its	line	and	column	positions,	find	the	total	number	of	occurrences	of	that	word,	find	
lines	where	one	or	more	words	occur,	as	well	as	suffixes	of	that	word	(words	that	it’s	a	part	of).		

Possible	Approaches	to	Minimising	the	cost	of	text	pre-processing	
Save	memory	to	disk	(Serialisable)	
Implementing	Java’s	Serializable	interface	or	using	Python’s	Pickle	function	the	state	and	objects	can	
be	saved	to	the	file	system	and	read	back	in	directly.	This	works	and	is	easy	to	implement,	but	is	not	
human	readable	and	therefore	not	portable	between	programming	languages.		

Save	data	structures	to	disk	
Save	Trie	to	Disk	
For	situations	with	low	memory,	but	relatively	fast	flash	based	external	memory,	researchers	at	
Bangladesh	University	of	Engineering	&	Technology	developed	DiskTrie	[2]		an	“efficient	external-
memory	data	structure	for	storing	strings	in	mobile	devices	using	flash	memory”.	Their	solution	uses	
path	and	level	compression,	then	writes	the	DiskTrie	in	a	computer	such	that	whole	blocks	are	read	
on	the	mobile	device.		

Build	trie	out	of	dictionary	and	save	to	JSON	
Building	a	trie	in	memory	out	of	a	dictionary	has	the	advantage	that	it	can	easily	be	saved	to	JSON	
and	is	human	readable	as	in	[3]	and	[4].	Testing	this	idea,	an	implementation	to	hold	all	the	required	
data	as	noted	in	the	Introduction	proved	difficult	to	implement.	

Save	a	compact	trie	to	JSON	
This	approach	is	similar	to	the	above,	but	should	save	disk	space	and	therefore	disk	loading	time	by	
not	storing	so	many	individual	objects.	However,	it	requires	the	trie	be	generated	in	a	compact	
manner	which	is	far	more	complex	than	a	normal	trie.	

Save	Results	to	disk	and	Rebuild	the	Trie	
Create	the	trie	and	other	data	structures	as	normal,	then	save	out	the	finalised	results	to	a	file.	
When	loading	it,	read	it	back	and	rebuild	it.	This	is	likely	slower	to	rebuild	than	the	previous	two,	but	
faster	than	parsing	the	document	since	it’s	already	“clean”.	

Chosen	Approach	to	Cost	Minimisation	of	text	pre-processing	
Based	on	the	above	summaries,	serialising	the	state	to	disk	seems	the	easiest	and	more	reliable	
approach.	



COMP7505	Assignment	3	Report	Anthony	Carrick	

Implementation	
Java’s	Serializable	interface	has	a	few	requirements	to	use	and,	“under	the	hood”	operates	in	a	few	
stages.	

Requirements	
1. Each	class	must	implement	Serializable	interface.	This	is	just	a	marker	interface	for	Java	to	

know	to	allow	serialisation	or	not.	[5]	
2. Each	member	field	that	can’t	or	shouldn’t	be	serialised	should	be	marked	as	transient.	[6]	
3. Static	fields	can’t	be	serialised.		
4. An	optional	serialVersionUID	so	that	the	class	can	change	intentionally	and	the	data	still	be	

deserialised.	Otherwise	Java	will	provide	one	anyway,	which	won’t	cope	with	simple	addition	
of	a	member	fields	or	some	complex	compiler/platform	differences.	[6]	

Java	Under	the	Hood	
Java’s	serialization	technology	is	rather	complex.	Instead	I	will	describe	only	the	parts	relevant	to	
storing	existing	Tries	and	linked	lists	as	follows.	

1. Java	writes	the	class’s	corresponding	ObjectStreamClass	to	the	stream	and	assigns	a	handle.	
2. Java	writes	Strings	as	the	length	followed	by	the	contents	in	modified	UTF-8.	
3. Java	writes	arrays	(such	as	in	a	trie)	as	a	handle,	the	length,	then	each	element.	
4. For	other	‘standard’	objects,	Java:	

a. Writes	metadata	associated	with	the	instance	(such	as	handle)	
b. Writes	out	descriptions	of	superclasses	starting	with	this	object,	up.	
c. Writes	the	classes	fields	starting	with	the	highest	object	in	inheritance	order	down.	

(Based	on	[7]	and	[8])	

Analysis	and	Comparison	to	loading	each	time.	
Loading	fresh	analysis	
For	each	line:	

For	each	word	on	line	(separated	by	space	or	hypen)	

	 Regex	processing	to	remove	non-alphabet	characters	-	O(c)	

	 Find	column	start	position	–	O(s)	–	using	Java’s	String	methods	

	 Add	word	to	Trie	

	 	 Create	and	traverse	the	trie	nodes	for	each	letter	in	the	word	

	 	 Add	the	Occurrence	object	to	the	list	at	the	end	node.	

Which	means:	
Per	letter:	traverse	nodes	(string-length	before	this	letter)	-	1	

Per	word:	O(c	+	s)	–	which	is	O(c*2)	where	c	is	the	length	plus	some	little	constant	operations.	Plus	
everything	in	Per	Letter.	

	Per	line:	Run	the	per	word	stuff	above	plus	split	into	array	O(c)	where	c	is	number	of	characters	plus	
Java’s	string	split	operations.	

O(W	*	w	*	L	+	Regex	+	String	methods	+	Create	LinkedList	nodes)	



COMP7505	Assignment	3	Report	Anthony	Carrick	

But	all	the	constant	operations	get	collapsed	so	it’s	just	O(W	*	w	*	L)	W	=	word-length,	w	=	number	
of	words,	L	=	number	of	lines.	

Deserialising	analysis	
Read	serialised	file	which	is	larger	than	the	in-memory	objects,	but	still	smaller	than	the	original	
document	(and	more	compact).	

Create	objects	in	memory	for	all	the	objects	it	reads	in.	This	is	O(n	+	o)	where	n	is	the	total	size	of	
unique	words	and	o	is	the	number	of	occurrence	objects	for	each	distinct	word.	

Conclusion	
Based	on	the	analysis,	it’s	cheaper	to	serialise	and	deserialise	the	data	structures	rather	than	loading	
each	start	up.	

	 	



COMP7505	Assignment	3	Report	Anthony	Carrick	

References	
	

[1]		R.	Thomas,	COMP3506/7505,	Brisbane:	University	of	Queensland,	2018.		

[2]		N.	M.	K.	Chowdhury,	M.	M.	Akbar	and	M.	Kaykobad,	“DiskTrie:	An	Efficient	Data	Structure	Using	
Flash	Memory	for	Mobile	Devices,”	in	Workshop	on	Algorithms	and	Computation	2007	-	
Proceedings	of	First	WALCOM,	12	February	2007,	Dhaka,	Bangladesh,	Bangladesh,	2007.		

[3]		Chetanrns	and	P.	Haugh,	“Converting	a	Trie	into	JSON	format,”	01	08	2018.	[Online].	Available:	
https://stackoverflow.com/questions/51624207/converting-a-trie-into-json-format.	[Accessed	
12	10	2018].	

[4]		P.	Haugh,	“Python	-	matching	end	of	string,”	12	07	2018.	[Online].	Available:	
https://stackoverflow.com/questions/51295864/matching-end-of-string/51296069#51296069.	
[Accessed	12	08	2018].	

[5]		M.	Narang	and	S.	Juneja,	“Serialization	in	Java,”	[Online].	Available:	
https://www.geeksforgeeks.org/serialization-in-java/.	[Accessed	14	10	2018].	

[6]		T.	Greanier,	“Discover	the	secrets	of	the	Java	Serialization	API,”	JavaWorld,	07	2000.	[Online].	
Available:	https://www.oracle.com/technetwork/articles/java/javaserial-1536170.html.	
[Accessed	14	10	2018].	

[7]		Oracle	Java	Authors,	“Java	Object	Serialization	Specification	ObjectOutputStream	Class,”	Oracle,	
2010.	[Online].	Available:	
https://docs.oracle.com/javase/7/docs/platform/serialization/spec/output.html.	[Accessed	14	
10	2018].	

[8]		P.	Banerjee,	“Java	Serialization	Part	2,”	25	04	2017.	[Online].	Available:	
http://prinavtech.blogspot.com/2017/04/java-serialization-part-ii.html.	[Accessed	14	10	2018].	

	

	

	


